温度对表层海洋酸化指标时空分布的影响
编号:1192 稿件编号:252 访问权限:仅限参会人 更新:2021-06-17 17:28:58 浏览:653次 口头报告

报告开始:2021年07月11日 11:05 (Asia/Shanghai)

报告时间:15min

所在会议:[S6A] 6A、海洋地球科学 » [S6A-2] 6A、海洋地球科学-2

暂无文件

摘要
As two most important metrics for ocean acidification (OA), both pH and calcium carbonate mineral saturation states (Ω) respond sensitively to anthropogenic carbon dioxide (CO2). However, contrary to intuition, they are often out of phase in the global surface ocean, both spatially and seasonally. For example, during warm seasons, Ω is lowest at high-latitude seas where there are very high pH values, challenging our understanding that high-latitude seas are a bellwether for global OA. To explain this phenomenon, we separate spatial and seasonal variations of both pH and Ω into thermal components mainly associated with internal acid-base equilibrium of seawater CO2 systems, and nonthermal components mainly associated with external CO2 addition/removal using a global surface ocean climatological dataset. We find that surface pH change is controlled by the balance between its thermal and nonthermal components, which are out of phase but comparable in magnitude. In contrast, surface Ω change is dominated by its nonthermal components, with its thermal components in phase and significantly smaller in magnitude. These findings explain why surface ocean pH and Ω are often out of phase in spatial patterns and seasonal cycles. When pH is primarily controlled by nonthermal components e.g., gas exchange, mixing and biology, pH and Ω will be in phase because their nonthermal components are intrinsically in phase. In comparison, when pH is primarily controlled by thermal components e.g., rapid seasonal cooling or warming, pH and Ω will be out of phase because thermal and nonthermal components of pH are out-of-phase in nature.
关键字
pH; calcium carbonate mineral saturation state; temperature; spatial distribution; seasonal cycles; ocean acidification
报告人
薛亮
自然资源部第一海洋研究所

稿件作者
亮薛 自然资源部第一海洋研究所
发表评论
验证码 看不清楚,更换一张
全部评论
登录 会议管理 酒店预订 提交摘要