利用卫星和地面能见度观测联合反演气溶胶单次散射反照率
编号:119 稿件编号:1249 访问权限:仅限参会人 更新:2021-06-08 14:06:09 浏览:617次 张贴报告

报告开始:2021年07月10日 10:55 (Asia/Shanghai)

报告时间:5min

所在会议:[SP] 张贴报告专场 » [SP-11] 主题11、大气科学 墙报

暂无文件

摘要
Aerosol single scattering albedo (SSA) measures the ratio of scattering to extinction, which is critical in determining aerosol radiative effect. However, spaceborne SSA retrieval is restricted by comprehensive monitoring requirements of both direct solar radiance and scattered sky radiance. Most existing passive satellite sensors such as MODIS and VIIRS only provide the measurements of reflected solar radiation at the top of the atmosphere (TOA), which are sensitive to both aerosol optical depth (AOD) and SSA. Current AOD products are commonly derived from satellites on the basis of assumed SSA. On the other hand, it would be possible to retrieve SSA using satellite measurements with known AOD. In this study, a machine learning approach is developed for the retrieval of SSA using joint visibility and satellite measurements. With meteorological and ancillary information, surface visibility can be converted to column AOD. Therefore, combining these variables representing AOD with MODIS measured TOA apparent reflectance, we retrieve SSA at over 2000 stations worldwide. The results show a great consistency with AERONET retrieved SSA. We also applied our method to surface PM2.5 measurements and obtained satisfactory results. Our work generates a global aerosol SSA dataset with extensive coverage over land, which can be used for the estimation of aerosol radiative forcing and the validation of climate models.
关键字
卫星反演,气溶胶光学特性,能见度观测
报告人
董悦明
北京大学

稿件作者
董悦明 北京大学
李婧 北京大学大气与海洋科学系
发表评论
验证码 看不清楚,更换一张
全部评论
登录 会议管理 酒店预订 提交摘要